Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density.
نویسندگان
چکیده
We model the energy transfer and trapping kinetics in PSI. Rather than simply applying Förster theory, we develop a new approach to self-consistently describe energy transfer in a complex with heterogeneous couplings. Experimentally determined spectral densities are employed to calculate the energy transfer rates. The absorption spectrum and fluorescence decay time components of the complex at room temperature were reasonably reproduced. The roles of the special chlorophylls (red, linker, and reaction center, respectively) molecules are discussed. A formally exact expression for the trapping time is derived in terms of the intrinsic trapping time, mean first passage time to trap, and detrapping time. The energy transfer mechanism is discussed and the slowest steps of the arrival at the primary electron donor are found to contain two dominant steps: transfer-to-reaction-center, and transfer-to-trap-from-reaction-center. The intrinsic charge transfer time is estimated to be 0.8 approximately 1.7 ps. The optimality with respect to the trapping time of the calculated transition energies and the orientation of Chls is discussed.
منابع مشابه
مطالعه خواص ضدباکتریایی عصاره های متانولی، اتری و آبی برخی از گونه های سیانوباکتری ها در شرایط آزمایشگاهی
Background and purpose: Cyanobacteria are rich sources of secondary metabolites. Antibiotic resistant pathogens are rising and people are more interested in using natural products these days. Hence, identifying competent cyanobacteria for the extraction of antimicrobial compounds is of great benefit. The main objective of this study was to investigate the in vitro antibacterial activity of ...
متن کاملEnergy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus.
Photosystem I of the cyanobacterium Synechococcus elongatus contains two spectral pools of chlorophylls called C-708 and C-719 that absorb at longer wavelengths than the primary electron donor P700. We investigated the relative quantum yields of photochemical charge separation and fluorescence as a function of excitation wavelength and temperature in trimeric and monomeric photosystem I complex...
متن کاملExcitation wavelength dependence of the fluorescence kinetics in Photosystem I particles from Synechocystis PCC 6803 and Synechococcus elongatus.
The excitation-wavelength dependence of the excited-state dynamics of monomeric and trimeric Photosystem I (PSI) particles from Synechocystis PCC 6803 as well as trimeric PSI particles from Synechococcus elongatus has been studied at room temperature using time-resolved fluorescence spectroscopy. For aselective (400 nm), carotenoid (505 nm), and bulk chlorophyll (approximately 650 nm) excitatio...
متن کاملPhotophysiological and Photosynthetic Complex Changes during Iron Starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942
Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abun...
متن کاملLateral Segregation of Photosystem I in Cyanobacterial Thylakoids.
Photosystem I (PSI) is the dominant photosystem in cyanobacteria and it plays a pivotal role in cyanobacterial metabolism. Despite its biological importance, the native organization of PSI in cyanobacterial thylakoid membranes is poorly understood. Here, we use atomic force microscopy (AFM) to show that ordered, extensive macromolecular arrays of PSI complexes are present in thylakoids from The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 85 1 شماره
صفحات -
تاریخ انتشار 2003